Scintillation Characteristics across the GPS Frequency Band
نویسندگان
چکیده
We investigate the characteristics of ionospheric scintillation across the entire GPS frequency band spanning the L5–L1 carrier signals (1176 MHz–1575 MHz). Of particular interest is the intensity correlation between carrier pairs, since this dictates the extent to which frequency diversity may be leveraged to mitigate scintillation impacts on navigation accuracy. Since only a few satellites currently broadcast the L2C and L5 signals, a limited number of scintillation field measurements have been collected to date. We show recent scintillations observations on L2C in Brazil collected in April 2012. Since current solar conditions are less disturbed than during the previous two solar maximum periods, however, it is not possible to explore the full range of scintillation conditions with current measurements alone. Therefore, we have developed a high-fidelity simulation technique to infer the complex (amplitude and phase) fluctuations of the L2 and L5 carrier signals from complex fluctuations of the L1 carrier signal recorded during the previous solar maximum. We compare this technique with two stochastic approaches which use the S4 index, rather than the raw complex data, as input. After demonstrating that the three techniques yield consistent results, we apply the simplest of these approaches to a database of L1 S4 observations
منابع مشابه
Real-Time Ionospheric Scintillation Monitoring
As the millennium approaches we are faced with a period of increasing solar flux and intense ionospheric scintillation. Not only single-frequency, but also dualfrequency GPS measurements will be badly affected by deep scintillation, due to its temporal and spatial decorrelation characteristics. Using the scintillation observables derived from dual-frequency phase and signal-to-noise ratio measu...
متن کاملA Comparison of GPS Performance in a Scintillation Environment at Ascension Island
Post-sunset disturbances in the equatorial ionosphere routinely cause rapid phase and amplitude fluctuations (i.e., scintillation) of radio waves propagating through the disturbed regions. The intensity of scintillations is positively correlated with the solar cycle and the associated signal fades will often exceed 20 dB at L-band frequencies during solar maximum. The effect of such an environm...
متن کاملDevelopment and use of a GPS ionospheric scintillation monitor
Besides their intended use in radionavigation, global positioning system (GPS) satellite signals provide convenient radio beacons for ionospheric studies. Among other propagation phenomena, the ionosphere affects GPS signal propagation through amplitude scintillations that develop after radio waves propagate through ionospheric electron density irregularities. This paper outlines the design, te...
متن کاملIdentification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation system...
متن کاملFirst light from a kilometer-baseline Scintillation Auroral GPS Array
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers...
متن کامل